The Photoelectron Spectrum of Quadruply Bonded W₂(O₂CCF₃)₄

G. Michael Bancroft,^{a*} Emmanuel Pellach,^a Alfred P. Sattelberger,^{b*} and Kevin W. McLaughlin^b

^a Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada ^b Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

We have resolved photoelectron peaks from the ionization of all three metal-metal molecular orbitals $[b_{29}(\delta), e_u(\pi), and a_{19}(\sigma)]$ that form the metal-metal quadruple bond in W₂(O₂CCF₃)₄.

There has been considerable recent debate about the bonding descriptions and photoelectron assignments for Cr. Mo, and W compounds containing quadruple metal-metal bonds.¹⁻¹³ In the dimolybdenum and ditungsten complexes, the photoelectron spectra and M.O. calculations are consistent with the low binding energy peak (labelled A as in ref. 4) being assigned to the $2b_{2g}(\delta)$ molecular orbital; the assignment of the second band is in dispute, however.4,6,7 In the dimolybdenum carboxylates, the SCF Xa-SW results^{8,9} assign band B to the $6e_{u}(\pi)$ orbital, whereas the *ab initio* calculations¹⁰⁻¹³ suggest that band B be assigned to both the $6e_{u}(\pi)$ and the $5a_{1g}(\sigma)$ orbitals. In the $M_2(mhp)_4$ (M = Mo, W; mhp = anion of 2-hydroxy-6-methylpyridine) complexes, the interpretation of band B is further complicated by overlap of ligand orbitals.⁶ The assignment problems are even more difficult for the dichromium compounds. The calculations^{3,9-13} indicate that the δ, π , and σ orbitals are much closer in energy in the chromium than in the molybdenum compounds, and the spectra are most readily interpreted on the basis of a configuration interaction wavefunction with the quadruply bonding configuration $\sigma^2 \pi^4 \delta^2$ as the leading term contributing to the first band (A).

Because of the increase in metal-metal orbital energy spread from Cr to Mo compounds, we felt that the spectrum of a ditungsten dicarboxylate might lead to resolution of the three peaks in the photoelectron spectra. The recent synthesis of the first such ditungsten compounds, $W_2(O_2CCF_3)_4^{14}$ [designated $W_2(tfa)_4$] with a very long W–W bond length of 2.21 Å[†] provided an excellent compound for a photoelectron study.

Both $Mo_2(tfa)_4$ and the air-sensitive $W_2(tfa)_4$ were doubly sublimed *in vacuo*, handled in an N_2 glove box, and transferred in our vacuum lock to the photoelectron spectrometer under N_2 . He I and He II spectra of both compounds were obtained using our hollow cathode lamp¹⁵ and heated inlet system¹⁶ at

Figure 1. He I photoelectron spectra of (a) $Mo_2(tfa)_4$ and (b) $W_2(tfa)_4$. The spectra have been computer-fitted to combination Lorentzian-Gaussian peaks. Bands A and B_2 in $W_2(tfa)_4$ have been fitted to two peaks to obtain a reasonable fit to the data.

probe temperatures between 140 and 180 °C. The spectra did not change between these temperatures, and the He I instrument resolution was always better than 30 meV. He I and He II spectra of the ligand, CF_3CO_2H , were also recorded.

[†] Compared with the Mo-Mo bond length of 2.09 Å in the Mo₂ (tfa)₄ analogue (F. A. Cotton and J. G. Norman, *J. Coord. Chem.*, 1971, **1**, 161) and the W-W bond length of 2.16 Å in $W_2(mhp)_4$ (ref. 6).

Figure 2. High resolution He I spectrum of the low binding energy region in $W_2(tfa)_4$.

Band	Mo ₂ (tfa) ₄ ^b	W ₂ (tfa) ₄	
Α	8.76	7.39	
B ₁	10.46	9.01	
B,		9.71	
-		9.81	
C_1	12.51	11.96	
C,	13.63	12.75	
\mathbf{D}_{1}	15.78	15.07	
$\mathbf{D}_{\mathbf{v}}^{1}$	17.09	15.82	
D_{\bullet}		16.83	

The He I spectra of the two quadruply bonded compounds are shown in Figures 1 and 2, and the ionization or binding energies are given in Table 1. The spectra of Mo₂(tfa)₄ and tfa are in good agreement with those published previously,^{1,2,4} and peaks A and B₁ lie well below the lowest lying ligand orbital at 12.1 eV. It is important to note that peak B_1 in $Mo_2(tfa)_4$ shows no signs of asymmetry as reported earlier, and that the separation of these two peaks is ca. 1.7 eV, as it is for all the Mo-carboxylate complexes.⁴ However, the spectrum of W₂(tfa)₄ shows three distinct bands (A, B₁, and B₂) at considerably lower binding energies than in the Mo analogue, and with a spread of 2.4 eV. These bands can be assigned to ionizations from the three component M.O.s of the quadruple bond: band A to $b_{2g}(\delta)$, band B_1 to $e_u(\pi)$, and band B_2 to $a_{1g}(\sigma)$. The area ratios $A: B_1: B_2$ of 1: 2.3: 1 are rather close to 1: 2: 1based on the degeneracies of the molecular orbitals, and compare with the A: B₁ area ratio in $Mo_2(tfa)_4$ of 1:3.2.[‡] The decrease in binding energy from Mo to W is expected,^{6,17} but the decrease is substantially greater than that between $Mo_2(mhp)_4$ and $W_2(mhp)_4$.⁶ The intensity changes between the He I and He II spectra of $W_2(tfa)_4$ are consistent with those seen⁴ for $Mo_2(tfa)_4$: bands B_1 and B_2 decrease in intensity relative to C and A.

The higher resolution spectrum of $W_2(tfa)_4$ (Figure 2) reveals more clearly some interesting additional features not present in the $Mo_2(tfa)_4$ spectrum. Band A is markedly asymmetric, and band B_2 shows a distinct splitting of 0.1 eV (*ca.* 800 cm⁻¹). Both features are probably vibrational in origin, with the W–W stretching vibration at 313 cm⁻¹, and the vibrational modes at 746 cm⁻¹ and 874 cm⁻¹¹⁴ being probably the most important contributors to bands A and B_2 , respectively. Another possible origin could be configuration interaction in the ground state leading, for example, to two δ configurations.¹⁸

It might be tempting to assign B_1 and B_2 to the spin-orbit components of the ²E state of $W_2(tfa)_4^+$, but the splitting of *ca*. 0.75 eV between B_1 and B_2 is larger than the 0.3-0.6 eV splitting expected from the spin-orbit interaction.⁶ Also, it is unlikely, even taking 0.75 eV as an acceptable spin-orbit splitting, that the photoionization cross-sections, widths, and structure of the two levels would be so different.

Since the molecular orbital calculations show that the $\delta - \pi - \sigma$ orbital energy spread does not increase dramatically (e.g. by a factor of two) from W to Mo analogues, our W₂(tfa)₄ spectra support the interpretation of the dimolybdenum spectra from *ab initio* calculations; band B is assigned to an overlap of the $6e_u(\pi)$ and $5a_{1g}(\sigma)$ orbital ionizations.

After submission of this note, we read the paper by Cotton et al.¹⁹ which reports the photoelectron spectra of $Mo_2Cl_4(PMe_3)_4$ and $W_2Cl_4(PMe_3)_4$. They also observe three low energy bands in the $W_2Cl_4(PMe_3)_4$ spectrum (at 5.81, 7.05, and 7.45 eV), but assign B_1 and B_2 to spin-orbit split components of the ²E state. The B_1 - B_2 separation of 0.4 eV is within the expected range of W spin-orbit splitting, but the band areas are anomalous even considering mixing with the δ and σ state. Taken together with our spectra of $W_2(tfa)_4$, it would seem more reasonable to assign the spectra of both $Mo_2Cl_4(PMe_3)_4$ and $W_2Cl_4(PMe_3)_4$ as we have done above for our carboxylate complexes.

We are very grateful to NSERC (Canada) and the U.S.

[‡] This intensity agreement does not constitute conclusive evidence, because the intensity ratios fluctuate considerably between Mo complexes, and between He I and He II spectra (ref. 4).

Department of Energy for financial assistance, and to one of the referees for very useful comments.

Received, 15th March 1982; Com. 297

References

- 1 J. C. Green and A. J. Hayes, Chem. Phys. Lett., 1975, 31, 306.
- 2 F. A. Cotton, J. G. Norman, B. R. Stults, and T. R. Webb, J. Coord. Chem., 1976, 5, 217.
- 3 C. D. Garner, I. H. Hillier, M. F. Guest, J. C. Green, and A. W. Coleman, *Chem. Phys. Lett.*, 1976, **41**, 91.
- 4 A. W. Coleman, J. C. Green, A. J. Hayes, E. A. Seddon, D. R. Lloyd, and Y. Niwa, *J. Chem. Soc.*, *Dalton Trans.*, 1979, 1057 and references therein.
- 5 A. H. Cowley, Prog. Inorg. Chem., 1979, 26, 45.
- 6 B. E. Bursten, F. A. Cotton, A. H. Cowley, B. E. Hanson, M. Lattman, and G. G. Stanley, J. Am. Chem. Soc., 1979, 101, 6244.
- 7 C. D. Garner, I. H. Hillier, A. A. MacDowell, I. B. Walton, and M. F. Guest, J. Chem. Soc., Faraday Trans. 2, 1979, 485.
- 8 J. G. Norman, H. J. Kolari, H. B. Gray, and W. C. Trogler, *Inorg. Chem.*, 1977, 16, 987.

- J. CHEM. SOC., CHEM. COMMUN., 1982
- 9 F. A. Cotton and G. G. Stanley, Inorg. Chem., 1977, 16, 2668.
- 10 I. H. Hillier, C. D. Garner, G. Mitcheson, and M. F. Guest, J. Chem. Soc., Chem. Commun., 1978, 204.
- 11 M. Benard and A. Veillard, Nouv. J. Chim., 1977, 1, 97.
- 12 M. F. Guest, I. H. Hillier, and C. D. Garner, *Chem. Phys. Lett.*, 1977, 48, 587.
- 13 M. F. Guest, C. D. Garner, I. H. Hillier, and I. B. Walton, J. Chem. Soc., Faraday Trans. 2, 1978, 2092.
- 14 A. P. Sattelberger, K. W. McLaughlin, and J. C. Huffman, J. Am. Chem. Soc., 1981, 103, 2880.
- 15 L. L. Coatsworth, G. M. Bancroft, D. K. Creber, R. Lazier, and P. W. M. Jacobs, J. Electron Spectrosc. Relat. Phenom., 1978, 13, 395.
- 16 G. M. Bancroft, D. J. Bristow, and L. L. Coatsworth, Chem. Phys. Lett., 1981, 82, 344.
- 17 F. A. Cotton and B. J. Kalbacker, Inorg. Chem., 1977, 16, 2386.
- 18 J. C. Green, R. Rankin, E. A. Seddon, J. H. Teuben, A. H. Jankman-Beuker, and D. K. G. DeBoer, *Chem. Phys. Lett.*, 1981, 82, 92.
- 19 F. A. Cotton, J. L. Hubbard, D. L. Lichtenberger, and I. Shim, J. Am. Chem. Soc., 1982, 104, 679.